Evaluating the classifier behavior with noisy data considering performance and robustness: The Equalized Loss of Accuracy measure
نویسندگان
چکیده
Noise is common in any real-world data set and may adversely affect classifiers built under the effect of such type of disturbance. Some of these classifiers are widely recognized for their good performance when dealing with imperfect data. However, the noise robustness of the classifiers is an important issue in noisy environments and it must be carefully studied. Both performance and robustness are two independent concepts that are usually considered separately, but the conclusions reached with one of these metrics do not necessarily imply the same conclusions with the other. Therefore, involving both concepts seems to be crucial in order determine the expected behavior of the classifiers against noise. Existing measures fail to properly integrate these two concepts, and they are also not well suited to compare different techniques over the same data. This paper proposes a new measure to establish the expected behavior of a classifier with noisy data trying to minimize the problems of considering performance and robustness individually: the Equalized Loss of Accuracy (ELA). The advantages of ELA against other robustness metrics are studied and all of them are also compared. Both the analysis of the distinct measures and the empirical results show that ELA is able to overcome the aforementioned problems that the rest of the robustness metrics may produce, having a better behavior when comparing different classifiers over the same data set. & 2015 Elsevier B.V. All rights reserved.
منابع مشابه
Tackling the problem of classification with noisy data using Multiple Classifier Systems: Analysis of the performance and robustness
Traditional classifier learning algorithms build a unique classifier from the training data. Noisy data may deteriorate the performance of this classifier depending on the degree of sensitiveness to data corruptions of the learning method. In the literature, it is widely claimed that building several classifiers from noisy training data and combining their predictions is an interesting method o...
متن کاملFeature Extraction to Identify Network Traffic with Considering Packet Loss Effects
There are huge petitions of network traffic coming from various applications on Internet. In dealing with this volume of network traffic, network management plays a crucial rule. Traffic classification is a basic technique which is used by Internet service providers (ISP) to manage network resources and to guarantee Internet security. In addition, growing bandwidth usage, at one hand, and limit...
متن کاملImproving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملA Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis
Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...
متن کاملA method to solve the problem of missing data, outlier data and noisy data in order to improve the performance of human and information interaction
Abstract Purpose: Errors in data collection and failure to pay attention to data that are noisy in the collection process for any reason cause problems in data-based analysis and, as a result, wrong decision-making. Therefore, solving the problem of missing or noisy data before processing and analysis is of vital importance in analytical systems. The purpose of this paper is to provide a metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 176 شماره
صفحات -
تاریخ انتشار 2016